机器学习在SNCR控制系统中的应用-青岛天正洁能环保科技有限公司

波克麻将

欢迎光临青岛天正洁能环保科技有限公司官方网站
专注于烟气低温脱硫脱硝一体化
承接国内各类脱硫脱硝工程项目
  • 详细信息
  • 您现在的位置:波克麻将 > 行业动态
  • 机器学习在SNCR控制系统中的应用

    返回列表来源:天正洁能          发布日期:2021/8/30    |    加入收藏关注:

    针对目前垃圾焚烧发电厂SNCR 系统自动控制投入率低下,对出口氮氧化物(NOx)的跟踪滞后,无法有效控制氨逃逸的现状,对SNCR控制系统采用机器学习模块进行优化。通过挖掘、分析各种工况数据,可实现对各种工况条件下的还原剂喷入量的精确控制。文章主要阐述了机器学习在垃圾焚烧发电厂SNCR 控制系统中的应用。

    近年来,随着城市化的不断发展,文化、生活质量的提高,城市环境质量的标准也在逐步提高,垃圾焚烧发电厂的尾气排放标准越来越严格,尤其是对垃圾焚烧尾气中氮氧化物(NOx)的排放标准更加严格。在SNCR 脱硝方式下,通过采用机器学习对控制系统进行优化改造,不但能够实现 NOx 达标排放、降低氨逃逸、减少喷枪损耗,并且能降低 SNCR 使用的单位生产成本。

    机器学习的原理

    目前,垃圾焚烧发电厂主流的 SNCR 控制系统采用 PLC 或 DCS,通过经典 PID 控制实现对出口 NOx 的排放控制。控制原理见图 1。



    氨水调节阀采用串级PID调节方式,主PID以NOx 指标为被控参数,副 PID以氨水流量为被控参数,主PID调节输出作为副PID调节的给定值,副PID 调节输出控制氨水调节阀的开度。

    由于 SNCR 工艺在加入还原剂后有一定的反应时间,是一个滞后系统,同时信号的测量相对实际工况的变化也是比较滞后的,所以当前观察到的工况不是实时的工况,而是在此之前某一个时刻的工况,具有强耦合、非线性、多变性、大滞后等特点,为了及时响应工况的变化,处理系统的控制必须采用超驰优化控制。同时,也需要对不同工况下还原剂的逃逸进行跟踪和控制,以保证控制指标的稳定。传统的串级PID 调节存在反应滞后、调节困难的问题,无法做到全自动投入。因此考虑加入机器学习模块(见图 2)。



    采用机器学习模块可设定主调节阀氨水上限、下限,改善了传统控制方法无法精确调整输出幅值的难题,从而达到优化控制NOx排放,降低氨逃逸的目的。

    应用效果

    加入了机器学习的SNCR优化工程,显著提高了自动投入率。在工况波动较大的情况下也能及时跟踪锅炉负荷(主蒸汽量)的变化, 自动投入率达99.9%以上。

    实现了如下控制:启停机时的冲洗控制、喷射阀的顺序控制、系统的联锁保护、配方选择控制、软水流量的自动控制、氨水用量自学习控制、氨水投入量的自动控制。

    对机器学习改造前后脱硝系统的相关数据进行比较,比较结果见下表。



    结语

    通过分析NOx排放值和锅炉主蒸汽量等信号的变化,采用机器学习控制技术来克服调节过程存在的控制非线性、死区大及反应不灵敏等问题。对影响SNCR效果的数据进行挖掘,模拟人工操作,先使系统超调,然后再迅速拉回,通过不断的自主学习,大大缩短了响应时间,解决了SNCR控制系统反应滞后、氨逃逸控制困难等问题。SNCR优化控制实施之后,烟气出口NOx的排放值(< 120mg/Nm3) ,优于国家标准(< 200mg/Nm3)。在满足排放标准的同时,氨逃逸控制在8ppm以下。具备机器学习功能的SNCR控制系统可产生良好的环境效益,在垃圾焚烧发电行业中具有较高的经济价值和市场推广价值。

    燃煤电厂、焦化、钢铁、水泥、电力等行业烟气脱硫脱硝脱白除尘设备厂家可选择青岛天正洁能环保科技有限公司更多详情请点击官网:www.rccjw.com查询!

    申明:本文章内容来自北极星环保网。著作权归原作者所有,如涉及作品侵权问题,请与我们联系,我们将及时处理!


    已经是第一篇了!下一篇:650MW机组脱硝分区喷氨技术应用

    青岛天正洁能环保科技有限公司 版权所有 Copyright © 2014 备案号:鲁ICP备14006185号-1
    联系人:李经理 手机:18678973766 座机/传真:0532-85587222 QQ:2496812696
    地址:山东省青岛市即墨区中国汽车产业新城(解放三路9号)
    友情链接: